Sleeping Aid Schematic

Based on electromagnetic-field radiation, Place it under the pillow – Built-in timer

Many people experienced sleeping well in natural surroundings, into a
tent or a wooden hut. This fact is due not only to the healthy
atmosphere but also from our unconscious ability to perceive natural
Earth’s magnetic-fields. The circuit generates this type of
Geo-magnetic-fields and lets us perceive them: in this manner our brain
is surrounded by an ideal environment for a sound sleep. (N.B. Basic
ideas for this circuit are coming from German papers).

Circuit operation:

IC2C and IC2D generate two square waves at about 1.2 and 5 Hz
respectively. These wave-forms are converted into 60µS pulses at the
same frequencies by means of C5 & C6 and mixed at Q1 Base. This
transistor drives the Radiator coil with a scalar series of pulses of
60µS length and 9V amplitude. IC1, IC2A & IC2B form the timer

C1 & R2 provide auto-reset of IC1 at switch-on. The internal
oscillator of IC1 drives the 14 stage ripple counter and, after about 15
minutes, output pin 1 goes high. Pin 3 of IC2A goes low and stops IC2C
& IC2D oscillation. If SW2 is left open (Alternate mode operation),
after 15 minutes pin 1 of IC1 goes low, pin 3 of IC2A goes high and
oscillators are enabled again.

If SW2 is closed (Stop mode operation), the first time output pin 1
of IC1 goes high, the internal oscillator of the IC is disabled by means
of D1. Therefore the circuit remains off until a reset pulse is applied
to pin 12 by means of P1 or when the whole device is switched-off and
then restarted. The same thing occurs when SW1 is switched on 30 or 60
minutes positions, obviously changing time length.

IC2B drives pilot LED D2 which operates in the following three modes:

flashes quickly and almost randomly when the Radiator coil is driven

flashes somewhat slowly and regularly when the Radiator coil is pausing during the Alternate
mode operation

is off when the circuit auto-stops (Stop mode operation)

Circuit diagram:

Sleeping Aid Circuit

Sleeping Aid Circuit Diagram


R1 = 1K 1/4W Resistors
R2 = 10K 1/4W Resistor
R3 = 10M 1/4W Resistors
R4 = 2M2 1/4W Resistors
R5 = 1K 1/4W Resistors
R6 = 10M 1/4W Resistors
R7 = 2M2 1/4W Resistors
R8 = 4K7 1/4W Resistors
R9 = 4K7 1/4W Resistors

C1 = 47µF 25V Electrolytic Capacitors
C2 = 100nF 63V Polyester Capacitor
C3 = 330nF 63V Polyester Capacitors
C4 = 330nF 63V Polyester Capacitors
C5 = 15nF 63V Polyester Capacitors
C6 = 15nF 63V Polyester Capacitors
C7 = 47µF 25V Electrolytic Capacitors

D1 = 1N4148 75V 150mA Diodes
D2 = LED (any type) (see Notes)
D3 = 1N4148 75V 150mA Diodes
D4 = 1N4148 75V 150mA Diodes
D5 = 1N4148 75V 150mA Diodes

IC1 = 4060 14 stage ripple counter and oscillator IC
IC2 = 4093 Quad 2 input Schmitt NAND Gate IC
Q1 = BC327 45V 800mA PNP Transistor
L1 = Radiator coil (see Notes)
P1 = SPST Pushbutton
SW1 = 2 poles 4 ways rotary switch
SW2 = SPST Slider Switch
B1 = 9V PP3 Battery, Clip for PP3 Battery

Generates a natural electromagnetic-field

Makes easier to fall asleep

Induces a prolonged and sound sleep without drugs

No side effects

Use of this circuit:
Select a timing option by means of the rotary switch SW1.

Choose 15, 30 or 60 minutes operation.

Select “Stop” or “Alternate” mode operation by means of SW2.

With SW2 closed (Stop mode operation) the electromagnetic radiation stops after the pre-set time is elapsed.

With SW2 opened (Alternate mode operation) the device operates for
the pre-set time, then pauses for the same amount of time: this cycle
repeats indefinitely.

Place the unit under the pillow and sleep like a log.

To reset a cycle press P1 pushbutton.

L1 is obtained by winding randomly 600 turns of 0.2 mm. enameled wire on
a 6 mm. diameter, 40 mm. long, steel bolt. Secure the winding with
insulating tape.

Mean current drawing is about 7mA, decreasing to less than 4mA during pauses when in

Alternate mode operation.

Battery life can be dramatically increased omitting LED D2 and its associated resistor R5.

Use a plastic box to enclose the circuit: metal cases can severely limit electromagnetic radiation.

Sorry, comments are closed!