Colpitts Oscillator


 

Colpitts Oscillator

The Colpitt’s oscillator circuit is a superb circuit and is widely used in commercial signal generators upto 100 MHz. The basic circuit of a Colpitt’s oscillator is shown in figure. It basically consists of a single stage inverting amplifier and an L-C phase shift network, as obvious from the circuit diagram shown. The two series capacitors Ct and C2 form the potential divider used for providing the feedback voltage – the voltage developed across capacitor C2 provides the regenerative feedback required for sustained oscillations. Parallel combination of RE and CE along with resistors Rj and R2 provides the stabilized self bias. The collector supply voltage Vcc is applied to the collector through a radio-frequency choke (RFC) which permits an easyflow of direct current but at the same time it offers very high impedance to the high frequency currents. The presence of coupling capacitor Cc in the output circuit does not permit the dc currents to go to the tank circuit (the flow of dc current in a tank circuit reduces its Q). The radio-frequency energy developed across RFC is capacitively coupled to the tank circuit through the capacitor Cc. The output of the phase-shift L-C network is coupled from the junction of L and C2 to the amplifier input at base through coupling capacitor CC, which blocks dc but provides path to ac. Transistor itself produces a phase shift of 180° and another phase shift of 180″ is provided by the capacitive feedback. Thus a total phase shift of 360° is obtained which is an essential condition for developing oscillations. The output voltage is derived from a secondary winding L’ coupled tothe inductance L. The frequency is determined by the Tank circuit and is varied by gang-tuning the two capacitors C1 and C2. It is to be noted that capacitors C1 and C2 are ganged. As the tuning is varied, values of both capacitors vary simultaneously, the ratio of the two capacitances remaining the same.

Working of Colpitts Oscillator

When the collector supply voltage Vcc is switched on, the capacitors C1 and C2 are charged. These capacitors Cl and C2 discharge through the coil L, setting up oscillations of frequency f = 1 / 2∏√[1/LC1 + 1/LC2] The oscillations across capacitor C2 are appliedto the base-emitter junction and appear in the amplified form in the collector circuit. Ofcourse, the amplified output in the collector circuit is of the same frequency as that of theoscillatory circuit. This amplified output in the collector circuit is supplied to the tank circuitIn order to meet the losses. Thus the tank circuit is getting continuously energy from thecircuit to make up for the losses occurring in it and, therefore, ensures undamped oscillations. The energy supplied to the tank circuit is of correct phase, as already explained and if Aβ exceeds unity, oscillations are sustained in the circuit.


Sorry, comments are closed!