Adjustable Zener Diode


A Zener diode is the
simplest known type of voltage limiter (Figure 1) As soon as the voltage
exceeds the rated voltage of the Zener diode, a current can flow
through the diode to limit the voltage. This is exactly the right answer
for many protection circuit applications. However, if it is necessary
to limit a signal to a certain voltage in a control circuit, Zener
diodes do not provide an adequate solution. They are only available with
fixed values, which are also subject to a tolerance range. What we are
looking for is thus an ‘adjustable’ Zener diode. Such a component would
be useful in a heating controller with a preheat temperature limiting,
for example, or in a battery charger to provide current limiting. The
answer to our quest is shown in Figure 2. Assume for example that the
output voltage must not exceed 6.5 V. The control voltage on the
non-inverting input is thus set to 6.5 V.

Adjustable Zener Diode Circuit

Adjustable Zener Diode Circuit Diagram

Now assume that 4.2 V is present at the input. The result is that
the maximum positive voltage is present at the opamp output, but the
diode prevents this from having any effect on the signal. However, if
the voltage rises above 6.5 V, the output of the opamp goes negative and
pulls the voltage back down to 6.5 V. The current is limited by R3.
Another example is a situation in which exactly the opposite is
required. In this case, the voltage must not drop below a certain value.
This can be easily achieved by reversing the polarity of the diode.
Another option is a voltage that is only allowed to vary within a
certain voltage window. It must not rise above a certain value, but it
also must not drop below another specific value. In the circuit shown in
Figure 3, the left-hand opamp provides the upper limit and the
right-hand opamp provides the lower limit. Each opamp is wired as a
voltage follower.

Author: Dieter Bellers – Copyright: Elektor July-August Magazine


Sorry, comments are closed!